Решить уравнение:

sin3x-4sinxcosx=0

sin3x-4sinxcosx=0
sin(2x+x)-4sinxcosx=0
sin2xcosx+sinxcos2x-4sinxcox=0
2sinxcos^2(x)+sinx(cos^2(x)-sin^2(x))-4sinxcosx=0
3sinxcos^2(x)-sin^3(x)-4sinxcosx=0
sinx(3cos^2(x)-sin^2(x)-4cosx)=0
sinx(3cos^2(x)-1+cos^2(x)-4cosx)=0
sinx(4cos^2(x)-4cosx-1)=0

sinx=0                   4cos^2(x)-4cosx-1=0
x=pi*k                    4t^2-4t-1=0 (t=cosx)
                               t=(1+sqrt(2))/2 или t=(1-sqrt(2))/2 (Первый корень отпадает, так как он больше единицы)
                               cosx=(1-sqrt(2))/2
                                x=+- arccos((1-sqrt(2))/2) +2pi*k

Ответ: x=pi*k, x=arccos((1-sqrt(2))/2) +2pi*k, x=-arccos((1-sqrt(2))/2) +2pi*k, k принадлежит Z

Оцени ответ
Не нашёл ответ?

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.

Найти другие ответы

Загрузить картинку
Самые новые вопросы